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ABSTRACT

The stress distribution in a ring of non-uniform cross
section under the action of a uniform radial line load is obtained.
The ring is fabricated in three segments; one segment whose cross
sectional area varies according to a power function and connects
two uniform segments. Several sets of parameters are chosen for
numerical calculations, Within these sets only the length of the
transition section changes. Thus, an appraisal of the importance
of the transition section in reducing the maximum stress is made.
The stress distribution for each lerngth of the transition section
chosen 1s plotted.

The maximum bending stresses are reduced, because of the
transition section, by as much as 63%¥., The corresponding length

of the transition section is approximately 60°.



1

100015

SECTION 1, LIST OF SYMBOLS

Outer (inner) uniform radius, Fig. 1

Centroidal radius of upper uniform section, Fig. 1
Centroidal radius of transition section, Fig. 1
Centroidal radius of lower uniform section, Fig. 1
Non-dimensional load parameter, Eq. (6)
Cross—-sectional areas of uniform sections
Cross~sectional area of transition section
Dimensionless constants, Eq. (12)

Dimensionless constant, Eq. (12)

Dimensionless constant, Eq. (12)

Young's modulus

Height of two uniform sections of ring, Fig. 1
Height of transition section, Fig. 1

Integrals, Eq. (37) to (41)

Moment of inertia of transition cross section
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Constant moments of inertia of uniform sections

Non-dimensional bending moment in lighter uniform sec-
tion, Eqe. (1), Fig. 2

Non-dimensional bending moment in transition section,
Eq., (2), Fig. 3

Non-dimensional bending moment in heavier uniform sec-
tion, Eq. (3), Fig. 4

Non-dimensional bending moment at ¢ = O, Eqe (5), Fig. 2
Radial line load distribution on rlng

Preesrure external to cylinder

Non-dimensional hoop force, Eqs. (9), Fige 2
Non-dimensional hoop force at ¢ = O, Eq. (5), Fig. 2
Non-dimensional strain energy, Eq. (10)

Ratio of centroidal to uniform outer (inner) radius for
lighter uniform section, Eq. (7)

Ratio of centroidal to uniform outer (inner) radius for
transition section, Eq. (7)

Ratio of centroidal to uniform outer (inner) radius for
heavier uniform section, Eq. (7)
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Angle locating beginning of transition section, Fig. 1
Angle locating end of.transition section, Fig. 1
Angular coordinate measured from crown, Fig. 2
Non-dimensional constant, Eq. (28)

Non-dimensional constant, Eq. (31)

Circumferential bending stress

Circumferential membrane stress

Poisson's ratio
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2, INTRODUCTION

The general interaction problem of finding the ring and
shell stresses in hydrostatically loaded_shells, reinforced by
periodically spaced frames,has been analyzed in detail in a sequence
of PIBAL reports. The initial problems were concerned with wniform
rings. 1In Refs., [l]* and [2] the first solutions of the problem of
non-uniform rings mounted on pressurized cylinders was considered,
In both of these reports the cross sectional area of the ring was
assumed to vary smoothly.

The problem of a hydrostatically loaded shell reinforced
by non-uniform stepwise discontinuous rings was investigated in
Refs. [3], [4], and [5]. 1In order better to distinguish between
these three solutions, they are henceforth referred to as problems
1, 2, and 3, respectively. Problems 1, 2 and 3 differ only in the
geometric configuration of the reinforcing rings.

The rings in problem 1 consisted of two uniform sections
having the same mean radius and subtending equal sector angles,
Thus the effect of eccentricity of the median line of the ring was

not considered,

*Numbers in square brackets refer to the Bibliography.
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In problem 2 the rings were again fabricated of two uni-
form sections subtending equal sector angles but having different
mean radii. The effect of eccentricity was, therefore, included
and was found to be significant in the evaluation of the ring
bending stress. Several approximations to p roblem 2 were included
and evaluated [4].

Finally, the description of the rings in problem 3 con-
tained one additional p arameter. These rings conisted of two uni-
form sections having different mean radii, but the two sections
no longer subtended equal sector angles. Thus, the location of the
discontinuity, i.e., the junction of the two uniform sections, was
a parameter.

In both problems 2 and 3 the maximum bending stress in
the ring at the discontinulty was roughly one third of the corres-
ponding membrane stress. In order to investigate the reduction of
the bending stress in the ring due to a smoothly varying transition
section between the two uniform sections, the interaction problems
2 and 3 have been extended. Let us refer to this as problem 4.

As mentioned previously, several approximations to prob-
lem 2 were presented in Ref. {4]. It was concluded that, within
the 1imits of the parameter ranges chosen, these approximations
were also valid in problem 3 where the two sections subtended dif-

ferent central angles.,
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Let us briefly analyze the basis for such a conclusion.
In problems 1, 2, and 3 the ‘interaction load, considered as the
unknown of the problem, was expressed as a Fourler series whose
coefficients were to be determined. In problem 1 the eccentric
effect of different mean radii was absent so that the ring bending
stress was quite low, i.e., a second order effect. 1In problem 2,
where eccentricity was present, the bending stress was a first
order effect, and, in fact, was found to depend most heavily on
the constant term of the radial component of the interaction load
Fourier series. With this in mind the problem was solved by taking
only this constant term into consideration. 1In effect, the inter-~
action load was assumed to be constant and radial. In Ref. [4]
this approximation to problem 2, within the limit of the parameter
ranges chosen, was found to be excellent. Further investigation
indicated that the approximation described could be further sim-
plified. This was accomplished by solving for the uniform inter-
action load between an infinitely long hydrostatically loaded
cylinder and a single uniform(based on a numerical average of the
two cross sectional areas) reinforcing ring. This proved to be a
reasonable approximation, within the limits of the chosen para-
meters, to the constant term of the interaction load for problem
4., One therefore concludes that problem 4 can be reduced to find-
ing the stresses in a uniformly loaded ring composed of two uni-

form sections and connected by a smoothly varying transition



section. The load (radial) on this ring is obtained from the
solution of the interaction problem of a single ring reinforcing
an infinitely long hydrostatically loaded shell. In particular,
the load may be obtained from Eq. (111), page 62 of Ref. [a].

In the numerical computations that follow, the length of
the transition section is the only parameter allowed to change, so

that the effect of the transition section can be readily ascertained,



3. THE BENDING MOMENT IN THE RING

The elements of the ring shown in Figs, 2, 3 and 4 are
in static equilibrium. From a consideration of moment equilibrium,

the results are

m = m - toa(l - cos o) - aao(l - cos o)
(1)
0Lo< o
me = m - to(a -y cos @) - ¥ ao(l - cos ¢)
(2)
9 SO X9,
my, = m, - to(a - B cos @) -8 ao(l - cos o)
(3)
9, L P S «x

where Mys Mes and mH, are bending moments non-dimensionalized with
respect to Young's Modulus E and to the constant radius a (see

Figs. 1 to 4) as follows:

3
m, = Mh/Ea
m, = M /Ea3 (4)
f f
3
m, = MH/Ea



S

The quantities m, and to are the non~dimensional moment and force,

respectively, at ¢ = 0 ,

3
Mo/Ea

3
i

(5)

t+
n

2
To/Ea

ao is a non~dimensionalized measure of the radial line load on

the ring P
o

% = 3 (6)

Finally, the following non~dimensional quantities in Eqs. (1) to

(3) are defined in the following manner (see Fig. 1):

a = ah/a
B = a,/a (7)
y = ag/a

where a s ags and ay are the centroidal radii of the three sec-
tions of the ring. While a and B are constants, y is a function

of the angular coordinate ¢.
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The equations of force equiiibtium give the hoop force

as a function of the external load

t=t cos o - to(l - cos o) (8)

where t is the none~dimensionslized hoop force (see Fig. 1)
t = T/Ea? (9)

The quantities t, and m  are unknown. It is coqygq;en;
at this time to determine these unknowns by Castigliano's theorem.

The requirement 1is that é%L =0 and éﬁL = 0 , where
u»is a non-dimensionalized strain ener;y given by °

u = = (10)

If a, refers to the radius of the median curve of the
ring, I the moment of inertia of across section,and A the area of a

cross section, the strain energy of the ring is

a 4 2 a
- (T_n2a M 2 n 2 t m M2
u = Io s I (5.3) do + sO'a " A (E 2 a Eas) de (11)

At this point let us define the following non-dimensional

parameters:
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(@]
L]
'Y
H
~
-
(9]
L]

a¥/1, ¢, = a%/1y
(12)

Q
1t
1"
[}
N
~
>

a2/Af C,
where the subscripts h, f, and H refer to those sections of the
ring having mean radii 33 ags and ay (see Fig. 1), respectively.
Equation (11) may be written in a manner suitable to
this particular problem. Incorporating the definitions (7) and
(12) (see Fig. 1 for definition of the position angles 9 and ¢°),

the strain energy may be written as follows:

_ s 2 %o 2 x 2
u = oC, So m,~ do + f¢f Yclf me" do + BC, 5¢° m,~ do
c Cs c (13)
3 °¢ 2 @ £ 2 4 oq 2
— - — - o+ — -
+ = So (te mh) do + $¢f Y (ta mf) do 5 f@o(ta mH) do

The quantities (te - m)s (ta - me), and (ta - mH) can
be found from Eqs. (1), (2), (3), and (8) as

ta - m = ta - me = ta ~ my = toa -m, (14)

From Eqs. (1), (2), (3), and (14) the following expres-

sions can be readily ascertained:

amh

3t < - a{l - cos o) (15)
°

amf

3t S - a*tycosg (16)

(o]
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amH
—-at = ~a+ pcos o (17)
o
om
B R
om, ~ 1 (18)
6mf
5;; =1 (19)
om
H
om_ - ! (20)

o

8(ta = m ) 3(ta - mg) 3(te - my)

= = = a (21)
ato ato ato
8(ta ~- mH) _ 9(ta - mf) _ d(ta - mH) - (22)
om - dm - 9m -
0 0 o

Taking Eqs. (15) to (22) into account, application of

the requirement au/am° = 0 to Eq. (13) yields

Pg % n
aC, 50 m, do + Smf Yclf mg do + BC, 5¢° m, do
c
C ] 3
3 - - o _“f
- == (tga = m o, = (t - m) Swf 7 do (23)

- = (tga = m)(x - g;) =0
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and application of the requirement au/ato yields

2. (% o
- aC) f," my(1 - cos @) do - Yy, me(a = ¥ cos o) do

f
- BC, §T my(a - p cos @) do + C(t a - m_ ) o (24)
? H 3% 7o o f
o €3
- o __f a - - =
+a(ta-m) SQf - do + 5 Cult,a mo)(n o)) =0

If Eq. (23) is multiplied by a and added to (24), the following

simplification results:

£ % 2
a C1 So m,  cos o do + 5¢f Y le me Cos @ do
(25)
+ 2C S“ m, cos ¢ dop = 0
B 2 %, H ¢ de¢

Equations (23) and (25) may be integrated by substitu-
ting the values of m , m;, and m, from Egs. (1)s (2), and (3).
Of course, any integral involving quantities with the subscript f
cannot be integrated until a specific function is assigned which
governs the geometry of the transition section. We leave this to
a later section.

The results of integrating Eqs. (23) and (25) at this

point wherever possible are given in the following expressions:
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[(9caC, + 8pC oy 24y 2y 4 o -——Csf
?¢aC) 58 2) *(op ==k b--_p-) + S‘Pf (‘fclf + s ) dq;]mo
c C
- 2 ‘ 2 3 4
+ [- al9gac, + 8pCy) + (a“C; sin o, = p“C, sin o ) ~ a (@ == e )
Cc
o 3 )
o f o ;2
5¢f (v 1, " ) do + IQf ¥ le cos o dw]to (26)

2 . 2
[(a chl + dp 02) - (a2Cl sin 9 - 32C2 sin wo)
)
+§° 7201 (1 - cos o) d¢]a°

P £

2 . 2, ® 2
((a C, sin ¢. - p°C, sin ¢°) + sz Y le cos ¢d¢]m°

+

- ala? - p2 1, 3 3 )
L ala Cl sin Pe p C, sin ¢°) + 3 (a ¢f01 + pTbCy

1,3 3 %o 2
+ 3 (a Cl sin 2°f - B C2 sin 2¢°) -a S¢: Y le cos oqdo
+ {% Yac cos 2q> dolt = [(u30 sin - 83, sin ) (27)

"0 1f o 1 A2 B o P

1 3 3
=2 (a79g + p72C))

cos odo

L ,..3 _ .3 % 3
Y (a C, sin 29, - p°C, sin 2¢°) + jvf Y le

?®
o 3 2
5¢f e le cos ¢d¢]a°
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where
[}
8 = n(l - ;f) (28)

The solutions of the simultaneous equations (26) and

(27) are

i %% .3 2
o = % {- sg(a - B)C2 5¢f Y le cos“pdao

3
i

+

azﬁ(u - B)(ad sin @ + o sin ¢ )C,C,
- 3 pla - ﬁ)(a3cpfcl + 53502)02
- % B(a - B)(ascl sin 2¢f - 33C2 sin 2q>o)c2

2 2 . 2 .
p(a - p)(a C, sin g, - 3"C, sin cpo)C2 sin o,

+ [~ a(azwfcl + 5?602)+ a(a2C1 sin ¢, - §2C2 sin @o)

% 3 P 2
-§ %y, cosodop-af Oy
Pg lg s

C, (1 - cos ¢)do
lg

2 @
- p"(a - B)C, 8in ¢°] Sv: Yzclf cos odo

2 . 2 1 3 3
+ [- a(a®Cy sin g, - B°C, sin ¢ ) + 3 (a 9¢C, + B 8C,)
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b 3 3
2 (o°C, sin 29, -~ p°C, sin 29,)

% 3 2 % 2
f °y°, cos“pdel] f ° yv°C, do
%t e % l¢
[ __C3 ___C4 % C3f %% 3 2
= +% - c, + —=)d C, cos “qd
a(q’f o ﬂ) a.{‘pf (y lf Y) o] jq,fY lfco pdo

% 3 3 3
(a fq): Y le cos gdp + a(a’C, sin g¢ - B°C, sin ?,)

3 3 3
%a9sC; + p78C,) ~ $(a’C; sin 29
C
3

3 . A f
- p°Cy sin 29 )] f(pf (Yclf * -7 Ydo

C o
4,, 3 3
cx(cPf -&3' + b "p—)(a C, sin 9 - § C, sin (po)

C c
4
(‘Pf — + 3 T)(G:B‘Pfcl + 536C2)

[S]~

(o 2+ 5 2)(a% 2 3, sin 20,)
wf a o) B \a lsin sQf—'ﬁ 2°n @o

i

2 2
La(ps aCy + 58C,) - (a C, sin ¢ - B°C, sin cpo)

C Cc 0
3
alog == + 8 —"34)] S‘p: Yaclf cos ¢do} a, (29)
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and
- i
t, = - a, + % {ap(ed sin o + Bog sin ¢ )(a - B)C,C,
Cc c
S3,, Sa 3 3
+ (op =+ b 5)(a7C) sin o; - p7Cy sin o)
3 3
- [~ (a C, sin 9, - p°C, sin ¢°)
c
%o 2 % 3¢
- o —
fq,f ¥ le cos odo] 5% (wrClf +-)do
- (62¢ C, +1 2C ) f¢° 20 cos od
£“1 P Co tva 1 odo
C Cc ®
=3 -4 o3 1
+ (@gaC; + 38C, + o, =+ 3 B) 5¢f Y le cos ¢ dela  (30)
where
c C
=4 (.3 3 =3 -4
6=31(a 9¢C) + P bC2)(¢fuCI +8pCy + g -+ B B)

+ L (o3¢, sin 29, - 3%, sin 29 )(9.aC, + 8pC, + E§+,,E£)
4 {00y 8in 29p = p Gy sin 29,){0gaC) + 8pCy + 0p B

2 2 2
- (aCy sin 9, - p7C, sin ¢ )

+

l, 3 3 1 3 3
[3(a"0gC, + p72Cy) + Z (a C, sin 29, - p°C, sin 2¢ )
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¢

9 ® 3
o 2 2 0 £
+ c C. + —=)d
Swf Y€, cos’e del Swf (v 1 =) de
2 2 P 2
- 2(a“C, sin g; - B°C, sin 9,) 5¢f ¥ le cos ¢do
- 1570 42 cos del? (31)
v, T C1 odo
£ £

By combining Egs. (29), (30), and (31) with Eqs. (1), (2},
and (3) the expression fdr Mys Mes m, as a function of a, can be

stated., The writing of these expressions is simplified if we let

~
i

o _3 2
1 {% (a = p)CyL- 3 S¢f ¥ le cos“qpdo

3 3 P 2
(a 9¢C, * B bcz) - B sin o S¢f Y le cos ¢do

nfjor

3 3
(a C1 sin 2¢f -8 02 sin 2¢°)

i
plo

- p(a201 sin @ - 5202 sin ¢°) sin ¢o]

1 2 2 :
+ % La(a C, sin ¢, - B C, sin Qo)

? 2 0 .3 % 2
+a§ °%y°C, cos odp - § ° ¥°C, cos edel § ° v°C, cos ode
9 g % 1 o ¢
1 3 3 3 3
+ % [% (a"0eCy + B 3C,) + % (a7C, sin 29 = p°C, sin 29,)



+

+

and

% 3 2 % 2
Sm; ¥7C, cos’pdp] SQ: v“c. do

£ le

C
C C 3 o
3 4 £ 3 2
% [(wf =+ 7;) + S(Yclf + —?—)dwj 5¢: Y le cos @do

3 3 3
3 [(a®0,Cy + p%C,) + % (oC) stn 29,

c
3 % 3¢
B C, sin 2¢ )] S¢f (YClf + =) do

- .3 3 1 3
oA ((a ¢fcl + B bCz) + 3 (a C1 sin 2¢f

C C
3 3 4
p C,p sin 2¢°)](¢f —+ 3 ﬁ)
i (a2C sin - 82 sin ) fQ° 3¢. cos od }
A 1 ¢ = B Lo P’ Jo, T ™1 ©do]
f
a

= R {ap(a - B)(ad sin o + Bog sin o )C,C,

C C
3 4 3 3
(¢f vy + b Tr)(a C1 sin 9; - B C, sin wo)

3 3
{(a C, sin ¢, - B C, sin 9,)

c
? ? 3
o 3 o f
c d C. + —) 4
S¢f Y7 cos e 0] S¢f (v 1 =) do

19.

(32)



2 ¢ 2
- [(a C, sin o, - p°C, sin wo)

¢ LY
2
+§ %y C1 cos odo] f¢: Y2C

do
®
£ £

lg

2 2 P 2
- (a%9,C, + »p C,) $¢: ¥ le cos odo

C C o
4 3
+ (ofacl + bBC2 + o, 7? + 3 7;) fwo Y Cl cos ¢dm}
£ f
so that
(mh/ao) =K, + Ky cos o
0 Lo < o

+

(mf/ao) =K + (a -7y) + (v/a)K, cos o

9¢ L 0 L 9,

i
~
+

(my/a ) = K, + (a = B) + (B/o)K, cos o

?, L P L™

20,

(33)

(34)

(35)

(36)

Eqs. (32) and (33) are not yet amenable to a numerical

determination. There remain within these equations terms of the

type
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Because the magnitudes of o and y are very close to unity, these
two terms combine to produce a small-difference which cannot be
eliminated until the geometry of the transition section is speci=-

fied. Further discussion of terms of the type mentioned above is

given in the Appendicss.
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4, GEOMETRY OF THE RING

The ring under investigation is fabricated of three dis~
tinct sections, (Fig. 1). Because of the symmetry of the ring
with respect to a vertical axis, this discussion will refer only
to that part of the ring between ¢ = 0 and ¢ = n (see Fig. 1).

Of the three segments of the ring, two are uniform.

One uniform segment lies between ¢ = 0 and © = @, and the other
between ¢ = ¢ and ¢ = = (see Fig. 1 for definition of ¢ and wo).
The transition section between the two uniform sections, however,
must vary smoothly, i.e., the cross sectional areas are continuous
at the two junctions but their derivatives are not. Furthermore,
a choice of geometry for the transition section will determine
whether or not the integrals in Egs. (32) and (33) are easily
integrable.

There are, in Eqs. (32) and (33), five integrals which

must be evaluated. These are

P
- o 2
I, = Swf ¥ le cos odo (37)
Y
o .3
I, = S¢f Y C1 cos @do (38)
®, .2
= (o
I, S(pf v°C, do (39)
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C

? 3¢
1, = o c + —&) ¢ 40
9
= (o3
Ig = S¢f Y le cos odo (41)

The quantities vy, C. 4, and C3 must be stipulated as

1

functions of 9. The choice offthese fu:ctions should be based on
the following criteria: 1) the resulting shape of the transition
section and whether it is physically reasonable, and 2) the degree
of complexity of the integrals (37) to (41). With these criteria

in mind the functions

¢ - cPf
Pe = P
Y = a(g) (42)
2 %
¢ =9
(2L i (43)
C, = C,(=%) 43
lf 1 C2
and
9 - ‘Pf
Oy (44)
C = C, (== 44
3f 3 C4

where chosen. It should be realized that these functions satisfy
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the imposed continuity conditions, namely,

® = op
Y = a
©, %% (45)
€3, = C3
¢ =9,
Yy =8
c1f =c, (46)
Csf = Cy4

With the functions {42) to (44) defined, the integrals
I, to Iy may now be evaluated. Substitution of Egs. (42) to (44)

into Eqs. (37) to (41) yields the following results:

a2C]
(Q‘)f = CPO)Ln 2
P Cy 2 2
I, = - a2c -— (a C, cos 9, - BC, cos ¢°)
(En -5-1)2 + (og - ¢°)2
p7C,
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) (o - ”0)2
N yazc ) e (uzc sin 2
v l "
0%, T 05)° .
3
a C
1 (9 = 9, )tn —=4
N 3
8 Ak
1 a3C ; ( 3C
L _—-l a [+
¢ (= )2+ (0 - 9,)° B
) f o] o
= 3
1 a C (e .
R (Ln ., e Gy sin 2 3
4 ) ) ‘Pf -pC
Bac2 (wf - ¢0)2 2 " 2¢°)
.]5 (¢f - ‘Po
: 3
3 (a"C 3
. 3c 1 - B c )
Lo — :
Bac (48)
2
(0, -
I = - £ 5 %) (a2 2
a C 17 pe
In ——l-z 2) )
X 9)
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(9 ~ 9,) (o - 9,) C; €,
14"”7—{6'1—"(“01‘302) -——'57;—(-;--‘3") (50)
n 7e, In €
a3Cl
(9g - o )in—
I, = - P C2 (3C - e3¢, cos )
5 = 3 a €y cos 9p = PGy ®
(n =12 + (o, - o,)2
3 P ®o
B Cy
(‘Pf = cf’c,)z 3 3 ]
- % (a”C; sin op - Bp°C, sin o ) (51)
(Xn a3 )2+ (op = <p°)2
B Cy
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5., BENDING STRESSES

In order to obtain the bending stresses in the ring the

following procedure should be pursued:

(a)

(b)
(c)

(d)

Obtain a, by solving for the interaction load be~
tween an infinitely long hydrostatically loaded
cylinder and a single uniform reinforcing ring

(or any other approximation of Ref. [4]),

-1/2
., = —2e200(e/0)7Y/ 2 (52)
CO CO E
1,610 (a/h)"3/2 A2y
¢ + c3

where the uniform ring is seclected such that

o._ 1
6§ =} (e + )
(53)
o _ 1 .
C3 =3 (Cy +Cp
Evaluate integrals I, to I, from Egs. (47) to (51).
Evaluate the quantity Ilc°le'15] from Eqs, (A8),
(Al1)) and (A12) (See Appendix). Evaluate the
®o
quantity I, SQf yclid¢ - 1,1, from Eqs. (A8),
(A11), (A13), (A14), (A15). Evaluate the quantity
a =~y from Eqs. (B10) and (Bl1).
Utilizing the results of (a), (b) and (c), above,
evaluate Eqs. (31) to (36).
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(e) Obtain the bending stress distribution in the ring

at the radius a (the outer radius) from the rela-

tions
(o )b
— B _-_-.(_1.:.3.).(; my
P Quter Radius e 1
0Lo< 9
(ogly RYEE S
P Outer Radius Y 1f
9, £ 0 L 0 (54)
and
(s )
—2b =LJ.§E_102,,,H
P Outer Radius

9, S P <™
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6. RESULTS

In order to judge the effect of the transition section
in reducing the maximum bending stress in the ring, a single set
of parameters describing the geometry of the ring was chosen.
However, many different lengths of the transition section were
considered.

The particular set of parameters which determine the

geometry of the ring (an inner ring) are

C, = 9.983(10") C, = 5.467(107)
3 3

Cy = 2.750(10°) C, = 2.250(10°)
a = 0.9909091 B = 0.9888889

and those which determine the length of the transition section of

the rings are

9, 90

90°, 80°, 70°, 60°, 45°, 30°, 10°, 0°.

P

The results obtained from the procedure outlined in
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section 5 are presented in the form of curves in Figs. 5 and 6 .
The maximum bending stress distributions are plotted in Fig. 5
for different lengths of transition section.

In addition to the stress distribution curves, two addi-~
tionél curves are presented in Fig. 6, They represent the reduc-
tion in the peak stresses, non~dimensionalized with respect to
the corresponding peak stress with no transition section, versus
the length of transition section., The solid curve represents the
stress reduction at the foot of the transition section (¢ = ¢f).
The other curve represents the stress reduction at the head of the

transition section (o9 = ¢o)o
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CONCLUSIONS

The primary purpose of the present analysis has been to
determine the reduction in the maximum bending stress caused by
introducing a smooth transition between two uniform but different
dections of a shell reinforcing ring. The non~-uniform ring with-
out the discontinuity has previously been analyzed [1]. 1In these
previous analyses the bending stress at the discontinuity was found
to be of the order of one third the membrane stress because of the
eccentricity at the discontinuity of the centroidal radius of the
ring. In Fig. 5 the bending stresses in the ring without any
transition section correspond to the 9, = P¢ = 0° curve.

The effect of the length of the transition sectien
(o, - 9;) is indicated in both Fig. 5, where the stress distribu-
tions are plotted for the various transition section lengths, and
in Fig. 6, where the stress reduction is plotted vs. the length
of transition section. These curves show a reduction in the maxi-
mum bending stress of approximately 60% in the less rigid section
and 50% in the more rigid section of the ring. For the two uni-
form ring sections the greatestreduction in the maximum bending
stress, however, occurs at different values of P, = Pge Thus,
the maximum reduction in the bending stress occurs in the less
rigid section when Py = Pp ™ 60°; the corresponding maximum stress

reduction in the more rigid section occurs when P ~ P = 90°.
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The reduction in the bending stress reaches a maximum
value in the less rigid section because the section is becoming
shorter and effectively stiffer. This effect becomes significant
after P, = Pp = 60°. For ®, - Pg > 60°, the bending stress at
the foot of the transition section is greater than its correspond~
ing value for P, = Pg ™ 60°.

The results indicate that a substantial stress reduction
can be obtained by introducing a transition section between the
two uniform sections of the ring. They further indicate that
there is an optimum length of transition section which is suggested

by a maximum reduction in the bending stress.
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APPENDIX

Equations (32) and (33) contain expressions of the type

Pq

Y3C cos odop  (Al)
®¢ g

and
¢ 9 3 4
I.§ ° vc do - 1.1, = [§ % v°c cos q@dollf ° yC, del
). TC1, 113 o, T C1g o TO1,
? o
- L5 ° v, cos odolf ° v3C. dol (A2)
°e g ®¢ 1l

Because the magnitudes of a and y are close to unity, Eqs. (Al) and

(A2) represent differences of nearly equal quantities. These dif-

ferences, which cculd lead to the loss of significant figures in a

numerical analysis, are eliminated by appropriate expansions.

If use is made of Eqs. (37) and (41), Eq. (Al) becomes

2
- Qo)[ 3 — (a2C1 cos 9. ~ B7C, cos ¢o)

)2
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3
a C
Lo —~+
PCy 3 3
) I (a”C, cos 9 = B°C, cos o))
(Ln ‘-‘3—-1")2 + (9 -0 )2
B C °
2
~(9p = 902 . — (a%c, sin o, - 8%, sin ¢ )
(tn =12 + (o, - 9 )2
B2C2 f o
- 3 4 (o.3C1 sin ¢ - 13302 sin o)1} (Ala)
[+ )
(4n ﬂacl)2 + (og - 9,)2
B Cy

It is evident that the expressions which will produce
the small differences are those within the square brackets. Con-

sider then the term

2 2
3 (a C, cos 9, = BC, cos ¢°)
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aSC

Ln 3
P Cy 3 3
- aéCA ; (a”C, cos @p = B°C, cos ?,) (A3)
(in EEEL) + (op - 9,)°
2

Expression (A3) may be rewritten

a3cl u3C1 2 2 a2Cl
In —3 (In —==) + (9g-0)" 2In —
P Cy P Co B Cy o
3 {L 5 3 (a C, cos o
e C 2 2 @ Cy 2 2 o €
(In —5—=)% + (0,-0)°  (In —5=5)" + (9.-9)° 2n —3
B c B <c 8°c
2 2 2
- ﬁ2C2 cos mo)a - (aacl cos 9g = ﬁ3C2 cos ¢°)} (A3a)
Let
0201
In =
B Cy
r, = (A4)
1 3
a C
n =3 L
£ Cy

Now expression (A3a) becomes upon substitution of (A4)
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2
((Pf q’o)
1+
Ln -E—L (Ln =——=)
8¢ goc
e 2 2 3
3 ~= { ( — )2 r, (a C, cos o
o o5 = @
(n —L)2 + (o )2 2, £ 70
o 1 3
8Cy ¢ Cy o
(In —5—=)
B°Cy
- aBz C, cos ¢o) - (a3Cl cos pg - 5302 cos vo)} (A5)

It can be seen that if o and B are qua

close to unity, r, is a quantity of or

1
and can be written

ry 1l + €y

where €, is small compared to unity.

be rewritten as

ntities whose value are

der of magnitude unity,

(A6)

Expression (A5) can again

aacl
tn =
g C 1 + ¢
—2_ { (a3, cos
3 €,(2 + ¢,) 1 9
(n 20)2 4 (g = 9 )2 1 ¥ i
53c *r 7 % (9; = 9,)
POURAD S «
2 1 + 3
aCy o
(En —5—=)
BCy
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2
- ap® C, cos 9,) - (a3Cl cos 9 - g3 C, cos ¢o)3 (A7)
Let
(9 = 9,)°
G =1+ 3 (A9)
© G o2
(4n —5—=)
B7Cy

and from expression (A7) let us expand

1+ gy 81(2 + sl) 512(2 + 81)2

= (1 +¢)[1 - +
51(2 ; sl) 1 G G2

1l +

513(2 + 81)3
- 3 -+ ....] (A9)
G

After multiplying, (A9) becomes

2 2
1+ ¢ 2+ ¢ e, (2+e.) €, (2+¢.)
e ) _ 1 114rey 1 1
51(2 + 81) =1+ 51(1 rd Y= 3 + 3 - eesl
1+ = G

(A9a)

In order to evaluate g, let us write Eq. (A6) and (A4) in the fol-

lowing form and expand:
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a2Cl
n o
g
7y = (L) = T = -
o in &
In 5 Lidng 1+ -——EE——
B C2 o C1
In 3
B C,
a s
=1_E‘_L__ . g 2. fi‘._&__3+...
2 ( 2 ) ( 7 ) (A10)
. a
in a2 1 in 62 ) In 5 1
£ Cy B Cy B Cy
An & in & in &
g, = - ———QEE—- {1 - ﬁzc + ( 520 )2 - cee] (A1l)
[+ a a
4n 3 1 In 5 1 In 5 L
p7C, p7Cy BCy

If we now substitute (A9) into (A7) and (A7) into (Ala), the fol-

lowing expression results:

- I{o;, - @) 2 +¢
1Y f 0 1
I,le1;, - 1] = 3, fog, (1 - ——4)[1
G Ln 3 1
B Cy
e (2+¢e.) e, 22+¢ )2
& 1, & T8 (e, «
G G2 1 oS ¢f
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- p? Cy cos o) = 3o - B)C, cos o}

) 2
_L(ee = o)) (- 0g,(2 + ¢,) o . €,(2 +¢)
3. G G
¢ 71y2
G(4n -5
B C,

2 2
g, (2 +¢;)

G2

+ - eee] - pz(a - 8)C, sin vo} (A12)

where ¢, is given by (A11).

The expression (A2) may be treated in a similar manner

to obtain
P (7S LI CR IV
Y o - 1 = - €n ~ T <
5 9 lf 1°3 u3C1 aCl 2 G
G 4n 3 £n T
p°c, PO
1 - 5 + 5 - ¢*¢]J(a C1 cos 9. - P~ C, cos ¢o)(

G

02C1 - 5202) + ap(a - p)(a cos o, - B cos ¢ )C,C,}

- (o - ¢°)3 g,(2 + el)J[ £,(2 + ¢,)

{leg - =510 - =

u3C 2 aC
G (4n —g—l) Ln EEl
B c, 2



2 2
e, (2 + ¢g,)
G2

+ - o;.](azc

1

+ af(a - B)(a sin 9, - B sin @p)Clcz}

where g, is given by (All) and

_-2%% 2%% 2%%2_ .
62 = aC [1 - ( aC )+ ( oC ) oo
Ln = Ln =L Ln —+
BCo BC, BC,
in & nd %n% 2
53--<——§—51—)n-( e gt - )
In ga; En ic, in EE;

41.

2 2
sin ¢ - 6202 sin ¢°)(a c, -8 Czl

(A13)

(A14)

(A15)
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APPENDIX B

Equation (35) contains the term (o - y). If a and ¥
are quantities of the order of magnitude of unity, the calculation
of this term involves a differerdce of nearly equal quantities.,
The resulting loss of siénificant figures can be eliminated by
suitable expansions. If use is made of Eq. (42), the quantity

(a = ¥) can be written as follows:
(P"'q)f

e T %
a -y = all - (%) ] (B1)

Since a and B are of order unity, we may write

¢ - ‘Pf - 9
%; =~ o __:_i..
a ° P ¢o
(&) = (1 + ¢g,) (B2)
where
g << 1 (B3)

If the binomial expansion is used to express the right-hand side

of Eqe (B2) in powers of €4s the following results:
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9 - Pge
e T 9
o = ¢ ? =~ 9; © = ¢ 2
(%) s e T e - 11 4
P ' PR PR [¢f " % 127 €4

- » -9

|9 = 9¢ 1, 3
- — L el | -L; 4+ see B4
Vg = Oy Pp * @ 1J[¢f - ] (B4)

€
?, 31 ~4
In order to find an expression for €4 let us write [see Eq. (7)]
a
gy - h
(B) =2 (B5)

H

This can be restated in terms of the thicknesses h and H of the

two uniform sectors of the ring. Thus,

- - 2) _ 2 H) 2 h) - 1
= —2'%4: —H/2) = "“f‘)‘z(: h) 4‘5‘)‘2(: H) =1 (B6)

Further algebraic manipulation leads to

wa
]

(B7)

1f the denominator is expanded, we obtain

(-0t =1+ () + (D2 (i (B8)
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Combining Eqs, (B7) and (B8) gives

-1 (B9)

However, if Eq. (B9) is compaered with Eq. (B2), we obtain the

following ekpression:

-1l (H_hy % (Hyk-1 _1_
€4 7 2 (a a) kil (a) 2k-—l (B10)

Finally, from Eqgs. (Bl) and (B4) we can write the expres-

sion for(a = ¥) in the following form:

(‘P"q’f) []_ (‘P""Pf l) 84
- = - s ——————— + —— . —
Loy ¢ Pe T 9P c4 e T 9 2
¢ - ¢ -0 82
o o —t- -2 2
‘Pf (Po (Pf ‘Po
-9 ¢ -9 ¢ - 9 53
f f 3 4
+ (—— e L Y (— L oy (—E _ 3y 22 (B
(wf ~o, )(¢f —— )(¢f “o, ) 32 3¢ )

Therefore, from Eqs. (B10) and (Bll) we can calculate(a - v) without
the loss of significant figures due to differences of nearly equal

quantities.,



FIG. | RING WITH TRANSITION SECTION

FIG. 2

FREE BODY DIAGRAM OF A SEGMENT
OF THE RING, 0Sy<



FIG. 3

FREE BODY DIAGRAM OF A SEGMENT
OF THE RING, 9. <9< 4,

M
d

FIG. 4

FREE BODY DIAGRAM OF A SEGMENT
OF THE RING,y,Sp<T
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